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Abstract. The Safran-Isba-Modcou (SIM) hydrometeorological system was developed and put into 15 
operations at Meteo-France in the early 2000’s. SIM application is devoted to water resource 
monitoring, and therefore can help monitoring drought or forecasting flood risks over French territory. 
This complex system combines three models: SAFRAN analysis of near-surface meteorological 
variables, ISBA land surface model which aims at computing surface fluxes at the interface with the 
atmosphere and soil variables, and finally MODCOU a hydrogeological model which calculates river 20 
discharges and groundwater level evolutions. SIM model was improved first by reducing the SAFRAN 
infrared radiation bias, then by using the more advanced multi-layer diffusion surface scheme of ISBA 
to have a more physical representation of the surface and soil processes. At the same time more accurate 
and up-to-date input databases for vegetation, soil texture and orography were used and finally in 
mountainous areas a subgrid representation of the orography using elevation bands was adopted as well 25 
as the possibility to add a reservoir to represent the effect of aquifers in mountains. SIM model was run 
for a 60y period from 1958 to 2018. The present paper describes the changes and demonstrates that the 
SIM new version performs better than the previous one by comparing a set of selected simulations to 
measurements of daily streamflow and observations of snow depths. 

1 Introduction 30 

Coupling hydrogeological models and soil vegetation atmosphere transfer (SVAT) models aims at 
representing water cycle accounting for as many physical processes as possible. Hence, in SVAT 
models, precipitation reaching the ground contributes to water storage, evaporation, surface runoff and 
soil infiltration. In addition to water balance, SVAT models do also simulate surface energy balance, 
which is closely linked to the water balance through the evaporation terms. In such a coupled system, 35 
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surface runoff is collected by the surface river network whereas deep soil infiltration contributes to the 
aquifer recharge. Such systems have been used for decades to study the water resource and forecast its 
evolution. Moreover, they have been used from the global to the regional scale to assess climate models 
against independent variables, such as river discharges and more recently against groundwater level. 
More generally, as a complement to surface and soil variable measurements, the evaluation of surface 40 
and soil parameterizations benefits also from independent variable comparisons such as river discharges 
simulated by hydrogeological models that can be compared to in situ measurements from gauging 
stations (Habets et al., 2008; Decharme et al, 2013; Alkama et al., 2010; Barthel and Banzhaf, 2015; 
Decharme et al. 2019). Interfacing SVAT and hydrogeological models in water resource studies, is an 
appropriate tool to address scientific questions such as the importance of climate change on these 45 
resources (Vidal et al., 2010; Dayon et al., 2018; Bonnet et al., 2018) or how human activity influences 
these resources (Martin et al., 2016; Biancamaria et al., 2019). Recent initiatives aimed at studying the 
impact of irrigation on water availability, such as those supported by the Global Energy and Water 
Exchanges project (GEWEX), where the modelling contribution of SVAT models appeared to be 
prominent and showed that irrigation should be accounted for in models (Boone et al., 2019). 50 
At Meteo-France, SIM has been designed first to study the water cycle for large French basins such as 
the Rhone basin (Etchevers et al., 2000), the Adour basin (Habets et al., 1998), the Garonne river 
(Voirin et al, 2002) and finally the whole France (Habets et al., 2008). This latter system has 
demonstrated its usefulness in the number of derived applications it is used for. For instance, since 
2003, SIM is used operationally at Meteo-France for drought monitoring using hindcast simulations, but 55 
also for near real time applications. These applications over France were based on a SVAT model using 
the Force-Restore approach (Noilhan and Planton, 1989; Noilhan and Mahfouf, 1996) for the transfer of 
heat and water in the soil. However, this method exhibits some limitations in the realism of the physical 
parameterizations, that are detailed in 2.2. These limitations concern the representation of the snow, the 
interactions between snow and soil freezing that are not always well captured, the root vertical profile 60 
description in the soil, or the composite approach to represent vegetation, mixing different types of 
vegetation in a single one, with aggregated characteristics. Although this method has proven in the last 
decades to be suitable to tackle scientific questions related to water resource, a revision towards a more 
physical method, based on the diffusion of heat and moisture in the soil (Decharme et al., 2011), was 
undertaken to account for more sophisticated numerical schemes to enhance the system performances.  65 
The goal of the current paper is to show how the development of new parameterizations has improved 
the system performances. The current study, based on a 60y long time series covering 1958-2018, 
shows how improvements in atmospheric forcing, land surface model physics and subgrid orography 
and hydrology impact and enhance these results. It also aims to describe how results are impacted by 
each set of modification and finally to demonstrate the new model configuration performs better than 70 
the previous one in terms of discharge extremes, when comparing model results to independent 
observed data such as snow depth or river discharges.  
Section 2 describes the original SIM configuration and its recent updates. Section 3 presents climate 
data and evaluation datasets, and the offline experiments used to demonstrate the advantages of the new 
SIM system. In section 4 the results of the new system are presented and finally they are discussed in 75 
the last section. 
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2. SIM hydrometeorological model 

2.1 Overview of the 2008 version of the model 

The SIM hydrometeorological model (Habets et al., 2008) combines the three SAFRAN, ISBA and 
MODCOU models. SAFRAN (Durand et al., 1993; Quintana Segui et al., 2008) performs a 6-hourly 80 
analysis of near-surface meteorological variables such as 2-meter air temperature and relative humidity, 
24 h precipitation, wind speed, cloudiness and a daily analysis of 24 h accumulated precipitation. The 
analysis is performed on geographic areas of a few hundreds of square-kilometres and the analysed 
fields are interpolated at an hourly timestep and direct and diffuse solar radiation as well as infrared 
radiation are computed from cloudiness, temperature and humidity profiles analysis using a radiation 85 
model (Ritter and Geleyn, 1992). A spatial interpolation is then performed on a regular horizontal grid 
of 8km mesh to provide to the ISBA (Noilhan and Planton, 1989; Noilhan and Mahfouf 1996) land 
surface model the necessary climate information. The grid is composed of 9892 cells (Fig. 1, left panel) 
covering France and is extended across its boundaries to encompass the upstream of the water basins.  
ISBA model uses SAFRAN analysis as input and computes the surface energy and water budget over 90 
vegetated areas. The water balance in ISBA ensures that soil moisture results of the balance between the 
supply due to incoming precipitation, and the release caused by surface evaporation, runoff, and soil 
infiltration. These two latter components are used to feed the hydrogeological model MODCOU 
(Ledoux et al., 1989; Habets et al., 1998) to compute the time evolutions of river discharges for a given 
set of selected gauging stations and groundwater head where aquifers are simulated i.e. on the Seine and 95 
Rhone basins only (delineated by the yellow areas in Fig. 1, right panel). The original SIM system 
differs in many aspects from the version described in the present paper. 

2.2 Land surface model improvements in SURFEX v8.0 

In the original SIM system, heat and water transfers in the soil were based on the Force-Restore method 
(Noilhan and Planton, 1989; Noilhan and Mahfouf, 1996, Decharme et al., 2011) that have been widely 100 
used in research for decades and is still used operationally in the French numerical weather prediction 
global model ARPEGE (Courtier and Geleyn, 1988) and the mesoscale model AROME (Seity et al., 
2011). In the Force-Restore method, the soil is split into two layers for temperature and three layers for 
moisture (Boone et al., 1999). However, such a method has exhibited some limitations in the 
representation of surface and soil processes like for instance the interaction between snow/soil freezing 105 
(Luo et al., 1998) due to the vertical discretization or the non-ability to properly represent the root 
vertical profile in the soil (Braud et al., 2005) and therefore the vertical transfers of moisture and heat. 
The alternative of using the Force-Restore method was developed by Boone et al. (1999) and revisited 
by Decharme et al. (2011) who proposed to use diffusive equations to solve both the heat and water 
transfer equations in the soil, based on Fourier’s and Darcy’s laws, respectively. Such a method 110 
proposes a discretization of the soil into 14 layers, resulting in a total depth of 12 meters, with a fine 
description of subsurface layers to well capture the diurnal cycle. The vertical discretization (bottom 
depth of each layer in meters) is the following: 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 5, 8, 12, as 
described in Decharme et al. (2013). The heat transfer is solved over the total depth, whereas the 
moisture transfer is solved over the root depth only, which depends on the vegetation types, a few tens 115 
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of centimeters for crops and a few meters for forests. In such a model, soil temperatures and moistures 
are calculated at the same nodes, which is mandatory to correctly represent soil freezing for example.  
Another noticeable improvement concerns the snow modelling. The original 3-layer snow scheme 
developed by Boone and Etchevers (2001) aimed at representing as realistically as possible the physical 
processes in the snow and for that purpose, some processes were adapted from the Crocus snow model 120 
(Vionnet et al., 2012) devoted to snow avalanche forecasting. The main new features recently developed 
and implemented in the ISBA snow model are described in details in Decharme et al. (2016) and 
concern (i) snow layering with an increase of the number of layers close to the surface in contact with 
the air, but also to the ground to better represent the diurnal cycle and the heat transfer at the 
snow/ground interface, respectively, (ii) snow compaction due to viscosity changes (Brun et al., 1989) 125 
and densification caused by wind at the surface (Brun et al., 1997), and (iii) snow absorption of solar 
radiation depending on 3-band spectral albedo.  
Then, the representation of the vegetation in the model has also evolved from the original version, 
where the various land use types present within a cell were aggregated with averaged surface 
parameters (Noilhan and Lacarrere, 1995), whereas the new system uses 12 separated vegetation types 130 
each having its own set of parameters (Masson et al. 2003; Faroux et al, 2013). The classification 
distinguishes three non-vegetated types: rocks, bare soil and permanent snow and ice, and nine 
vegetated types: temperate broadleaf deciduous, boreal needleleaf evergreen, tropical broadleaf 
evergreen, C3 culture type, C4 culture type, irrigated crops, grassland, tropical grassland, and finally 
peat bogs, parks and gardens. Although this approach is more expensive in terms of computational time 135 
because the model has to be run for each vegetation type, the realism of ISBA simulations is enhanced 
because the parameters are adapted to the various vegetation types. Moreover, using explicitly 12 
vegetation types is mandatory when using ISBA-A-gs the simplified photosynthesis module of ISBA 
(Calvet et al., 1998) aiming at representing a realistic photosynthesis of the different biomes. In the new 
version the avoiding or tolerant response to drought is adopted (Calvet et al., 2004). 140 
Hydrology processes are obviously important in a system aiming at computing water balance for natural 
surfaces and simulating river discharges. The former parameterization of drainage developed by 
Mahfouf and Noilhan (1996) for the Force-Restore scheme, has been replaced by a diffusive method of 
water in the soil. Surface runoff in ISBA occurs over saturated areas (Dunne and Black, 1970). Habets 
et al. (1998) have proposed a subgrid parameterization to generate surface runoff on grid boxes of 145 
several square kilometres before the whole grid box was saturated, in order to account for regional 
heterogeneities such as orography variability or spatial inhomogeneity of precipitation. In this approach, 
based on the VIC model (Liang et al., 1994; Dümenil and Todini, 1992), the fraction of saturated area 
varies as a function of the soil water content and a curvature term that needs to be calibrated and defined 
as 𝑏 = 𝑚𝑎𝑥	 '()*+,-.

()*+,/0
, 10*45, where 𝑧789 and 𝑧7:;	are the minimum and maximum elevations in a 150 

grid box and 𝜎+ the standard deviation. In the original system b equals 0.5, a very high value as 
compared to other studies at the scale of a watershed. Indeed, a more realistic value should be around 
0.2 (Lohman et al., 1997; Ducharne et al., 1998). However, the Force-Restore scheme is known to be 
too dry (Decharme et al. 2011, 2019) and a high slope (so a rather large curvature term) in the grid cell 
is mandatory to generate enough runoff. Using the diffusion scheme has removed this constraint of a 155 
high b coefficient and in the new SIM application a value of 0.25 is now used over areas without aquifer 
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where it is set to 0.01 corresponding to no subgrid runoff. Dümenil and Todini (1992) parameterized the 

fraction of saturated area A as a function of soil moisture 𝐴(w4) = 1 − '1 − BC
BD/E

5
F/(FHI)

, where w2 is 
the volumetric soil water content in the rooting zone and wsat its value at saturation, and for a loamy 
(wJ:K = 0.45 m3/m3) wet soil (w4 = 0.4	m3/m3), the presence of an aquifer (𝑏 = 0.01) is characterized 160 
by a small saturated fraction area of about 2%. 

2.3 Use of more accurate land surface parameters 

In addition to the changes in the model physics described previously, the databases of soil texture, 
vegetation coverage and topography were upgraded to improve the realism of external parameters in the 
ISBA model. Only the hydrogeologic database representing aquifer and the routing network are 165 
unchanged. Soil texture database in France was a soil map provided by the Institut National de 
Recherches Agronomiques (INRA – King et al., 1995) at a 1 km resolution. The update here consists in 
using the Harmonized World Soil Database (HWSD – Nachtergaele et al., 2012) which is a soil map at 
1 km resolution that combines several datasets available worldwide. In particular over France the 
above-mentioned INRA soil map was integrated in the HWSD dataset (used in other applications using 170 
SURFEX outside France), therefore, this change does not affect the SIM simulations. Figure 2 shows 
maps of clay and sand fractions, key parameters that control transfers of energy and moisture in the soil, 
aggregated at 8 km resolution from HWSD. 
In the same spirit, the Global 30 Arc-Second Elevation (GTOPO30, 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info) at a 1 km resolution was 175 
replaced by the Shuttle Radar Topography Mission (SRTM90, https://cgiarcsi.community/data/srtm-
90m-digital-elevation-database-v4-1/) at a 90 m resolution to represent topography. The impact of using 
SRTM90 is also very limited because the target resolution of SIM applications over France is 8 km 
which implies that the orography is averaged at such a resolution whether GTOPO30 or SRTM90 is 
used.  180 
The last input database modification is the vegetation map which provides the fraction of each 
ecosystem. The global ECOCLIMAP1 (Masson et al., 2002) at 1 km resolution was used originally in 
SIM application over France. Then a new classification algorithm was developed over Europe to build 
the ECOCLIMAP2 land cover map (Faroux et al., 2013), in order to use more accurate and recent 
satellite information as inputs and for a longer time period. Among various differences, ECOCLIMAP1 185 
was for instance using 1992-1993 AVHRR satellite data whereas ECOCLIMAP2 is using 1999-2005 
SPOT/VEGETATION data. The impacts of changing the vegetation fraction as input to the ISBA 
model are manifold and won’t be described here (see Faroux et al. (2013) for a detailed comparison), 
but using ECOCLIMAP2 makes the user more confident on the ability of such a database to capture the 
surface heterogeneities even if when performing numerical simulations with the ISBA model for long 190 
time periods, the land cover varies in time and can obviously be different from the ones from 1999-2005 
corresponding to the classification. 
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2.4 Changes in Infrared radiation 

SAFRAN radiation was corrected to compensate a radiative deficit that was already identified in several 
studies (Le Moigne et al., 2002; Carrer et al., 2012, Decharme et al., 2013) although observations of this 195 
variable are very scarce. Radiation in SAFRAN is simulated (Ritter and Geleyn, 1992) from a 
cloudiness analysis based on the analyses of air temperature and humidity profiles from the French 
global ARPEGE atmospheric model. Le Moigne (2002) and Carrer et al. (2012) have shown that the 
SAFRAN infrared radiation was biased low, and Decharme et al. (2013) have increased globally over 
France by 5% the infrared radiations in their offline simulations. For instance, Le Moigne (2002) 200 
showed that both infrared and solar radiations were too low at Col de Porte site in the Alps and 
proposed a correction depending on cloudiness and altitude that was successfully applied to the Rhône 
basin during the Rhone-AGG intercomparison experiment (Boone et al., 2004). In this study, only the 
infrared correction is considered and applied over the whole France. The correction of infrared 
radiation, described in Appendix A, was established by comparing the SAFRAN analysis and the 205 
infrared measurements of two meteorological stations Carpentras and Col de Porte which are reference 
stations for infrared measurements monitored by Meteo-France and located respectively in south-east 
France and in the Alps. Carpentras is located in plain whereas Col de Porte, the experimental 
measurement site of the Centre d’Etudes de la Neige, is located in the French Alps at a height of 1340 m 
(Morin et al., 2012; Lejeune et al., 2018). The correction is only applied below 1340 m, because a 210 
positive bias is experienced at Saint-Sorlin site (Queno et al., 2017). Figure 3 shows the initial infrared 
radiation annual mean (left panel) and the amount of energy supply when the correction is applied (right 
panel). 

2.5 Altitudinal subgrid variability in mountainous areas 

In SAFRAN the analysis is performed on homogeneous areas of several hundreds of square kilometres 215 
and an explicit vertical discretization is applied so that the analysis is done every 300 meters. For each 
grid box i, the analysed variables 𝑋:(𝑖) are then interpolated on a horizontal 8 km grid, accounting for 
the averaged elevation of each grid box, and used as input to the ISBA model. At this resolution, the 
9892 grid cells cover the whole extended France and some boundary areas for hydrological purposes. 
However, this resolution is still too coarse to accurately capture the subgrid variability of some 220 
variables, in particular over mountains. Lafaysse et al (2011) demonstrated on the Durance basin that 
using elevation bands is an efficient method to better describe the spatial variability of the snowpack 
and its impacts on river discharges, at a much cheaper numerical cost than by increasing the horizontal 
resolution. Therefore, a similar approach was defined for the whole French territory and can be 
summarized as follows: for a given grid cell i, the SAFRAN analysis is performed every 300 m and the 225 
𝑋:(𝑖, 𝑘) are the k sets of analysed variables corresponding to each of the k elevation bands. For each i, 
if the vertical subgrid variability is large enough, a complementary set of k’ bands is defined for 
different elevations to represent this variability. The vertical interpolation is then done on the 
atmospheric forcing at each k’ band. ISBA simulates surface runoff and soil infiltration at each k’ band 
that are used to compute the final surface runoff and soil infiltration for a grid cell i. Among the 9892 230 
grid cells, 1044 are above 500 m and exhibit a large subgrid topographic variability. For each of these 
1044 grid cells, between three and five layers are necessary to capture their total vertical extent, leading 
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to a total of 3878 grid cells involved in the computations over mountains. Figure 1 (right panel) shows 
the 1044 grid cells topography height where elevations bands method is applied.  
Moreover, to compensate the inability of the SIM system to simulate low flows where aquifers are not 235 
explicitly accounted for, a subgrid parameterization of the drainage was used in the original SIM 
system. This subgrid drainage is controlled by a calibrated parameter both for plain areas and 
mountains, but such a calibration does not perform very well because the water used to sustain low flow 
is taken from the rooting zone and not from the aquifer. In the new system, this parametrisation is 
removed, and a parameterization was added to mimic the behaviour of a deep reservoir to sustain low 240 
flows and to limit the flood peak due to the snow melt (Lafaysse et al., 2011). Retaining the water due 
to snowmelt and releasing it at the dry season has helped simulating the flood peak but still the summer 
low flows are underestimated. 

3. Experimental design and datasets 

3.1 Offline simulations 245 

In this study the SIM system is an offline application where the ISBA land surface model is driven by 
climate data and no feedback from the surface to the atmosphere exists. Various configurations of SIM 
have been designed to highlight the improvements that have been achieved, each simulation being spun 
up for two years.  
The first configuration refers to the old SIM system (SIM_REF hereafter, as described in 2.1), i.e. 250 
before any of the changes previously described. An additional reference simulation (SIM_REF2 
hereafter) is based on SIM_REF where subgrid drainage is removed. The first experiment (SIM_PHY 
hereafter) consists in changing the physics and the input databases. SIM_PHY uses the ISBA diffusion 
scheme with 14 layers in the soil, the updated snow scheme with 12 snow layers, a tile approach based 
on 12 vegetation types, and a runoff parameterization where the high constraint on the b coefficient 255 
(b=0.5 in the runoff parameterization in SIM_REF) was lowered to 0.25. In SIM_PHY also, the updated 
databases are used for a better representation of soil texture, orography, and vegetation. The SAFRAN 
infrared radiation correction with cloudiness is then introduced in experiment SIM_FRC (based on 
SIM_PHY). Then, SIM_TOP (based on SIM_FRC) uses the subgrid orography representation in 
mountains, and finally SIM_NEW (based on SIM_TOP) accounts for a drainage reservoir in mountains. 260 
Table 1 summarizes the main characteristics of the experiments. 
In the SIM system, climate data is provided by the SAFRAN analysis. In the present study, SAFRAN 
covers a period of 60 years from 1st August 1958 to 31st July 2018. In SAFRAN, the guess comes from 
ERA-40 or ERA-Interim (Dee et al., 2011). The analysed variables are then interpolated hourly into the 
SIM grid at 8 km resolution and this full set of near-surface variables is then used to drive offline 265 
simulations. Figure 4 summarizes the near-surface SAFRAN averaged analysed fields for the whole 
period over France used as input to the offline experiments, whereas Fig. 5 highlights annual means of 
these quantities. 
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3.2 Validation data sets and tools 

Various datasets were used to assess the SIM model performances along the validation process, to 270 
ensure that an improvement in climate input data or physics was improving at the same time surface or 
soil variables and rivers discharges. 
The Land Surface Analysis Satellite Applications Facility (LSAF) project disseminates Meteosat 
Second Generation geostationary satellite products, and in particular infrared downwelling radiation 
(LSA SAF; Trigo et al., 2011; http://lsa-saf.eumetsat.int ). LSAF Data covering the period 1st August 275 
2010 and 31st July 2015 are considered to evaluate the quality of the SAFRAN infrared radiation. 
In addition to Infrared radiation data of Carpentras and Col de Porte already mentioned in Sect. 2.4, in 
situ data of Saint-Sorlin (2620 m) and Argentière (1900 m) stations from the French Service 
d’Observation GLACIOCLIM (https://glacioclim.osug.fr) were also used to evaluate SAFRAN infrared 
radiation with elevation. The covered period extends from December 2005 to December 2015. 280 
The Meteo-France climatological database (BDCLIM) was used to retrieve soil temperatures at depths 
10, 20, 50 and 100 centimetres over France from 1992 to 2015 for 104 weather stations (Fig. 6). These 
temperatures were compared to the temperatures simulated with the ISBA model at the same depth to 
assess the ability of the soil heat transfer process to accurately simulate temperature profiles. 
The river discharge observations come from the Banque Hydro (http://hydro.eaufrance.fr/), French 285 
national database from 1958 to 2018. Daily and monthly stream flow data from 470 selected gauging 
stations were used to evaluate river discharges simulated by the hydrogeological model MODCOU. The 
Nash Sutcliff Efficiency (NSE, Nash and Sutcliff, 1970) was used to evaluate the model performance, 
and in addition the discharge ratio between the SIM simulations and the observations was calculated to 
assess the bias of the system. The complementary cumulative distribution function (CCDF hereafter) of 290 
NSE that calculates the probability of the NSE to be greater than a threshold, averaged over the number 
of gauging stations in France, is also used as a metric to assess NSE. 
Snow depth is another independent dataset (i.e. not assimilated in the reanalysis process) used to 
evaluate the system. Measurements are provided by 185 stations in the Alps, the Pyrenees, and Corsica 
at elevations ranging between 600 and 3000 m a.s.l. They include 26 ultrasonic sensors mainly in high 295 
elevation areas (Nivose network) and 161 stations operated by Meteo-France partners mainly in ski 
resorts and providing manual measurements on snow stakes. Daily total snow depths are used to 
compute bias and Root Mean Square Errors for SIM_REF and SIM_NEW simulations over the 1984-
2016 period between October and June. Note that most stations do not provide comprehensive data over 
the whole period. 300 

4. Results 

4.1 Description of the climate data 

Figure 5 shows the annual means of the atmospheric forcing from 1958 to 2018. 2-meter air temperature 
(Fig. 5a) and specific humidity (Fig. 5b) exhibit a natural interannual variability and a tendency to 
increase over time by about 1.4 K and 0.6 g Kg-1 (linear regression of the annual means time series), 305 
respectively (which implies that relative humidity tends to decrease). The abrupt change of temperature 
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in 1987/1988 discussed by Brulebois et al. (2015) is not that obvious. 10-meter wind speed (Fig. 5c) at 
the beginning and the end of the analysis period is of the same order with a magnitude of 2.8 m s-1, but 
exhibiting a significant decrease of 0.5 m s-1 between 1983 and 1995 and then a regular increase until 
2018. Interannual variability is larger for precipitation than for the other variables but does not show 310 
any tendency on average. Incoming radiations also present a remarkable change around 1988 with 
approximately +15 W m-2 for the direct solar radiation and +5 W m-2 for the infrared radiation between 
the periods before and after 1988. In the meantime, the diffuse solar radiation decreases by 10 W m-2 
from 1988 onwards. On average the total amount of solar and infrared energy received by the surface 
increases by about 10 W m-2. This behaviour is consistent with the discussion of Brulebois et al. (2015) 315 
and the analysis of Boé (2016) and can be caused by several reasons. It can be argued that the decrease 
of aerosols and the increase of greenhouse gases in the atmosphere have increased significantly the 
incoming radiations as climate studies have shown (Wild 2012). In addition to these physical reasons, a 
more technical reason is the change in the large-scale reanalysis, that evolved from ERA-40 to ERA-
Interim, with a priori small changes in the analysed fields. However, in ERA-Interim, the data 320 
assimilation system evolved substantially and changed to a 4D-variational method as compared to the 
3D-variational method previously used in ERA-40. This new system appeared to be more accurate and 
the assimilation of a lot more satellite observations has significantly improved the analysis and the 
forecast. In particular the vertical profiles of temperature and relative humidity were improved, and they 
are used as input of the cloudiness analysis for the computation of the solar ad infrared radiation. Table 325 
2 summarizes the comparison in terms of bias and root mean square error (RMSE) at the four weather 
stations measuring IR radiation. Except for Carpentras station where LSAF IR radiation is almost 
unbiased and the error the lowest as compared to SAFRAN, scores are better for stations in altitude with 
SAFRAN when the correction is applied. Due to their high elevation no correction was applied to 
Argentière nor Saint-Sorlin. At Argentière station, bias and RMSE are smaller with SAFRAN than 330 
LSAF. At Saint-Sorlin however, the bias is higher with SAFRAN but the RMSE if of the same 
magnitude than LSAF. 

4.2 Impact of new model configurations 

Figure 7 presents the comparison of each SIM simulation with the observed river flow for the 470 
gages. The river discharge is slightly underestimated with SIM_REF2, and the underestimation is 335 
corrected by calibrating the subgrid drainage term, as shown in SIM_REF simulation, where discharge 
ratio (simulated over observed) is centred around 1 and the daily efficiency range (NSE hereafter) 
characterized by its CCDF is larger for all stations. SIM_PHY does not account for any subgrid 
drainage parameterization and therefore should be compared to SIM_REF2 simulation. SIM_PHY tends 
to overestimate discharges as shown by the mean discharge ratio between simulations and observations. 340 
However, the CCDF of NSE shows that SIM_PHY performs better than SIM_REF2 for NSE greater 
than 0.56, corresponding to half of the total number of stations, and highlighting the added value of the 
physics associated with better description of vegetation types and other more accurate databases. 
SIM_PHY exhibits slightly worse results for Nash ranging from 0.5 to 0. (about 40 % of the stations) 
but in this case the two models do not perform very well. 345 
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Figure 8 shows how scores are improved for the experiments with corrected infrared radiation 
(SIM_FRC), subgrid orography (SIM_TOP) and hydrology (SIM_NEW), both in terms of CCDF of 
NSE and discharge ratio. The bias in river discharge is significantly reduced when increasing infrared 
radiation due to a higher total evaporation leading to less water available in the rivers. However, a 
positive bias remains, which is expected, since SIM simulates natural runoff and discharges, without 350 
abstraction nor derivation, whereas some basins are anthropized. SIM_FRC and SIM_TOP NSE scores 
are very close and better than SIM_PHY for all stations and SIM_REF for about 75 % of the stations 
with NSE greater than 0.4. Finally, SIM_NEW as SIM_TOP tends to overestimate the discharge, 
however their NSE are significantly improved as compared to SIM_REF for all NSE ranges. 
Figure 9 presents a map of the differences of mean annual NSE (for stations with positive NSE) 355 
between the different configurations.  Over the whole reanalysis period, Fig. 9a confirms first that 
SIM_PHY alone does not improve discharge simulations everywhere over France but only in the gages 
that were already reasonably represented (with NSE above 0.56). Then the new IR forcing improves 
scores almost everywhere except 2 isolated stations in the Seine basin (Fig. 9b). As expected, SIM_TOP 
has an impact only over mountains and more particularly over the Alps (Fig. 9c) and finally SIM_NEW 360 
compared to SIM_TOP highlights the benefits of using a groundwater mountain reservoir for snow (Fig. 
9d). Note that the number of stations is reduced in Fig. 9c and Fig. 9d because these experiments do not 
concern the whole territory. In Fig. 10 SIM_NEW is compared to SIM_REF and shows the benefits of 
all the changes. The SIM_NEW NSE map indicates that the model explains a large part of discharges 
variance over most stations (brown to green colours) but still some stations exhibit NSE values medium 365 
(red) to low (blue). In particular, the gages in northern France are not well simulated but also the Alps 
region known to be highly anthropized. 

4.3 Comparison to old SIM 

To complement the previous results and demonstrate the successive improvements of the simulated 
discharges, seasonal scores were computed over the 60 years using Taylor diagrams, recognized as a 370 
useful tool for graphically summarizing how a set of simulations matches observations (Taylor, 2001). 
A set of experiments can be analyzed in terms of correlations, centered root-mean-square difference 
(RMSD), and the amplitude of their variations represented by the normalized standard deviation. These 
scores are computed using all daily observations and simulations. Seasonal Taylor diagrams (DJF, 
MAM, JJA, SON for winter, spring, summer, and fall respectively), of the different experiments are 375 
shown in Fig. 11. It results that whatever the season, SIM_NEW simulation exhibits the highest 
correlation and the smallest RMSD, except perhaps for JJA, the season with the highest normalized 
standard deviation. In DJF, scores are very good and tightened whereas in JJA, they are still tightened 
but the RMSD is larger. MAM and SON confirm the benefit of using a groundwater reservoir to keep 
water in mountains before releasing it in spring. 380 

4.4 Extremes river flows 

Previous results have shown how SIM_NEW was performing on average over the 60y time period. To 
assess the ability of the new system to properly simulate extreme river discharge and so to distinguish 
flood and low flow periods, daily river discharge deciles were computed and particular attention was 
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given to Q10 decile corresponding to low flow states and Q90 decile the threshold above which a flood 385 
is considered as decennial.  
As shown in Fig. 12 Q10 and Q90 indicate first that in very dry periods (discharges lower or equal to 
Q10) all simulations but SIM_NEW have a too low amplitude of variations. In addition, for SIM_NEW 
experiment, correlation, RMSD and normalized standard deviation are best. The variability in terms of 
normalized standard deviation is reversed when considering floods (Q90) as compared to dry periods 390 
(Q10). Again SIM_NEW has the smallest RMSD and all simulation correlations are superior to 0.99. 
Figure 13 compares monthly observed to simulated discharges of the Garonne river at Lamagistere with 
SIM_NEW and confirms the ability of the model to rather accurately simulate low flows during summer 
seasons and its tendency to overestimate flood peaks. 

4.5 Snow height 395 

To complement the previous results against discharges, a comparison of snow depth from SIM_REF 
and SIM_NEW was performed using 185 stations as described in Sect. 3.2. In Fig. 14 the spatial 
variability of scores is presented as a function of elevation with notched boxplots where the boxes 
represent the interquartile interval, the whiskers the 10th and 90th percentiles, and the notch represents 
the 90% confidence interval of the median estimated by a bootstrap sampling technique among the 400 
available stations. The SIM_REF simulation exhibits a positive median bias at the lowest elevations and 
a negative median bias between 2000 and 2400 m while the SIM_NEW is not biased at any elevation. 
The variability of bias between stations is also reduced in the SIM_NEW simulation. Consistently, a 
significant reduction of RMSE is obtained at the lowest and highest elevations with SIM_NEW as well 
as a reduction of the 90th percentile of RMSE at all elevations. These results are consistent with the 405 
improved elevation resolution in mountainous areas which reduces the elevation discrepancies between 
simulated grid cells and observation stations. Slight improvements of SIM_NEW scores can also be 
obtained by linear interpolations at the stations elevations of the simulated snow depths at the two 
closest elevation bands. Note also that the improved snow scheme is also expected to explain a part of 
the scores improvement (Decharme et al., 2016). 410 

4.6 Soil temperature profile 

A direct comparison of SIM_NEW to another independent variable, soil temperature profile, was also 
performed. Model output temperatures at depth 10, 20, 50 and 100 cm in the soil for baresoil were 
compared to observed temperatures between 1992 and 2015 for 104 weather stations (indicated in Fig. 
6). The results summarized in Table 3 show bias and the centered RMSE calculated at the 104 stations. 415 
As in the previous study of Decharme et al. (2013), a global cold bias (here of about -0.8 K) is observed 
at each depth, which can probably be attributed to a deficit in the incoming shortwave radiation at the 
surface and/or to the none representation of the deep earth geothermal heating. On the other hand, the 
RMSE remain rather small with higher values close to the upper soil layers as compared to the deepest 
ones. RMSE ranges from 2.1 K at 10 cm below the surface to 1 K at 100 cm. Such a comparison of 420 
temperatures at different depths is possible because the soil vertical discretization allows it (as opposite 
to SIM_REF). 
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4.7 Changes on the simulated water and energy balance 

Maps of the Bowen ratio and the ratio of the evaporation to precipitation are presented in Fig. 15. The 
areas where the Bowen ration is the largest are located in the mountains where snowfalls limit the 425 
evaporation, along the Mediterranean coast where the annual precipitation is limited and the incoming 
radiation large, and in a large area covering the Garonne basin, and part of the Loire and Seine basins, 
characterized by high vegetation fractions. The ratio evaporation to precipitation is also the largest in 
plain areas where the Bowen ration is large. Over mountains, high precipitation and limited evaporation 
due to the presence of snow conduct to the smallest ratio evaporation to precipitation. These results are 430 
comparable to those obtained by Habets et al. (2008) for another time period, except that in SIM_NEW 
the Landes forest (Southwestern France at the Atlantic coast) exhibits a higher Bowen ratio. The first 
reason comes from the difference in the photosynthesis parameterization and more precisely the 
parameterization of the leaf conductance used in SIM_REF based on Jarvis (1976) and SIM_NEW 
based on Calvet (1998) ISBA-A-gs module that accounts for plant stress and reduces substantially the 435 
evaporation over vegetated areas. Thus, the surface energy balance tends to increase the sensible heat 
flux. The second reason is linked to the increase in infrared incoming radiation that strengthens sensible 
heat flux and diminishes the latent heat flux, which usually occurs on dry soils with a low evaporative 
capacity. Interannual variability of the ratio of the evaporation to precipitation (E/P hereafter) and the 
Bowen ratio are shown in Fig. 16 and 17 respectively, for SIM_REF, SIM_PHY, and SIM_NEW to 440 
characterize first the old system as compare to the new one and also to highlight the impact of changes 
from SIM_PHY to SIM_NEW on the energy budget. E/P is larger in SIM_REF than in the two other 
simulations every year, and E/P in SIM_NEW is closer to SIM_REF than in SIM_PHY. Total 
precipitation is very similar but slightly lower in SIM_REF and in SIM_PHY or SIM_NEW, due to the 
higher resolution orography and the subgrid orography representation in mountains. Therefore, a larger 445 
E/P corresponds to a larger total evaporation. The Bowen ratio is the lowest for SIM_REF, it increases 
in SIM_PHY, and is the highest in SIM_NEW, which already tends to evaporate more than SIM_PHY. 
This result shows that the sensible heat flux in SIM_NEW is much larger than in SIM_PHY due mainly 
to the increase in the incoming infrared radiation. 

5. Discussion 450 

5.1 Climate data 

Coming back to climate data as shown in Fig. 5, heterogeneity exists in forcing data, especially in 
radiation. Two reasons can explain the breaking in time series, the first is due to the large-scale analysis 
used to reconstruct temperature, humidity and cloudiness profiles. As explained in Sect. 4.1, the 
computations of these profiles have varied in time following the improvements of the global data 455 
assimilation systems that were used from ERA-40 to ERA-INTERIM. The second reason that can be 
invoked is the variation of the observation density network in time. Indeed from 1958 to nowadays 
substantial changes have been experienced in the deployment of new weather stations. The combination 
of these two changes makes that the SAFRAN reanalysis is not homogeneous in time and it appears 
important to understand how the OI results are influenced due to these changes when analysing the 460 
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results of the simulations. However, abrupt change can also be due to the dimming / brightening effect 
(Wild 2012, Brulebois et al., 2015, Boé 2016). 
As already mentioned, the uncertainty on the SAFRAN IR radiation is large. Taking advantage of 
having observations of IR in plain and mountains has allowed a fair comparison between LSAF 
products and SAFRAN without correction (SIM_PHY) and with correction (SIM_FRC). Because the 465 
impact of this variable is very large, and particularly on snow (Quéno et al, 2017, Sauter and Obleitner, 
2015), an extension of the in situ observation network would help to better understand its spatial 
variability and to improve model simulations. Extending the correction to the whole France is debatable 
but the decision was guided by the positive bias in river discharges and also the willingness to have a 
more realistic energy supply in mid-mountain areas (i.e. below 1500 m) to better catch the evolution of 470 
the snowpack. 

5.2 Subgrid hydrology 

This method has shown that hydrology in mountainous areas was improved because the analysed 
precipitation rate and phase were better represented for each elevation band than when averaging on the 
vertical, resulting, in the Durance case (Lafaysse et al., 2011), in a decrease of the overestimated spring 475 
peak flow associated to a better phase between the monthly observed and simulated discharge. 
However, summer and winter low flows were still largely underestimated by the model. During long 
dry periods without precipitation or snowmelt river discharges are controlled by underground drainage. 
In the frame of the Aqui-FR project (https://www.metis.upmc.fr/~aqui-fr/) aiming at developing a 
hydrogeologic model platform over France to simulate discharges and water table heights, aquifers are 480 
explicitly simulated and the SURFEX (Masson et al., 2013) water fluxes used as input must not be 
impacted by any empirical aquifer representation. Moreover, in Aqui-FR some hydrogeologic 
applications have been calibrated using SURFEX runoff and infiltration water fluxes as input (Vergnes 
et al., 2019). 

6. Conclusions and perspectives 485 

This study illustrates how the developments performed these last ten years improve the 
hydrometeorological system SIM. Several important changes have been done, in particular in the ISBA 
soil physics where the Force-restore method has been abandoned and replaced by the soil multi-layer 
diffusive method. In the same time the snow model was revised to get closer to Crocus model as 
described in Sect. 2. The model was run based on the tiling approach for vegetation, each of the 12 490 
vegetation types being characterized by their own set of parameters, opposite to the one vegetation type 
approach where parameters are aggregated. Then more accurate databases of soil, orography, and land 
use were used. A more accurate infrared forcing has allowed to significantly improve the results as well 
as the use of a groundwater reservoir in mountains associated to a specific vertical discretization of 
massifs. The new configuration of the model, including all of the new or updated functionalities 495 
mentioned above, has been shown to perform better than the old system and was therefore better suited 
for water resource studies. Comparisons to independent observations of daily total snow depth and river 
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discharges were conducted and confirmed that scores were improved. In addition, the new SIM system 
was better representing extremes in river discharges, both for low flow periods and floods.  
There are a few perspectives that can be proposed to improve the SIM system. The first one concerns 500 
the improvement of the climate description. It has been noticed that SAFRAN was performing well in 
most cases but some deficiencies were still remaining. A new near-surface reanalysis system is being 
developed at Meteo-France to replace SAFRAN. It includes a new surface analysis of 2-meter air 
temperature, relative humidity and daily precipitation, and uses high resolution model outputs as 
background for the analysis. In addition, in the framework of the Copernicus program, a 5.5 km high-505 
resolution reanalysis will be produced over Europe and will constitute an interesting product to compare 
to SAFRAN over France.  
The second one concerns the improvement of the physics of the model and more precisely the use of the 
Multi-Energy Budget scheme (Boone et al., 2017; Napoly et al., 2017) to allow an explicit calculation 
of the canopy interactions with air and soil. The MEB model has demonstrated that the use of a litter in 510 
forests was improving surface fluxes results.  
Then, accounting for anthropisation, especially irrigation and the presence of dams could benefit the 
SIM system to improve its realism and allow fairer comparisons to gauging stations in anthropized 
basins. Irrigation is currently being developed in the ISBA model and the integration of dams is a 
longer-term project. Finally, better representing groundwater and their characteristics in France is 515 
another challenge that needs also to be addressed. 
 
Code availability. The SURFEX v8.0 source code, including the ISBA code, used in this study is 
available in the supplement, as well as the SAFRAN code. The post-processing codes, including 
the scores package of the snowtools opensource project, are also available in the supplement. 520 

Data availability. The outputs from all models discussed here and the R and Python programs to plot 
the results are available in the supplement.  

Supplement. The supplement related to this article is available online at 
http://doi.org/10.5281/zenodo.3689560.   

Author contribution. Model developments were performed by PLM and EM for the SAFRAN analysis 525 
over France, SF for SURFEX and BD for the diffusive version of SURFEX/ISBA, and FH for 
MODCOU. PLM and FB designed the experiments and carried them out. ML performed the 
comparison of snow results. DL provided valuable Python scripts for figures. JB and ML were first 
testing the model for their own research. PE, FB and FR are responsible for the operational SIM suite at 
Meteo-France. PLM prepared the manuscript with help of all co-authors. 530 
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Appendix A 

Principle of the infrared correction 
The correction was proposed to compensate a deficit in longwave radiation analysed by SAFRAN when 
compared to the infrared measurements of two reference meteorological stations Carpentras and Col de 535 
Porte, located respectively in south-east France and in the Alps. The correction is applied below 1340 
m. The comparison was made for measurements collected between August 1993 and August 1994 every 
three hours.  
The correction writes:      

𝜀(𝜎) = (−5.42 + 1.14𝜎 − 0.11𝜎4) ∗ 10*4   (A1) 540 
𝐿𝑊𝐷YZ[ = 𝐿𝑊𝐷[\] [1 + 𝜀(𝜎)]⁄                        (A2) 

Where 𝜎 is the analysed cloudiness in octas, 𝐿𝑊𝐷[\] the SAFRAN longwave downward radiation, and 
𝐿𝑊𝐷YZ[ the longwave downward radiation when the correction is applied, i.e. when divided by 1 +
𝜀(𝜎). Figure A1 shows the amplitude of the correction as a function of cloudiness. The radiation 
increase is the highest in clear sky conditions and decreases with cloudiness up to 5 octas and increases 545 
again for more cloudy skies. 
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Table 1: main characteristics and differences of the experiments. 

 SIM_REF SIM_REF2 SIM_PHY SIM_FRC SIM_TOP SIM_NEW 
Land Surface Model 
Soil transfers 
Soil layers 
Snow layers 
Photosynthesis 
Vegetation types 

 
Force-restore 
2 or 3  
3  
No  
1 
 
b=0.5 
Calibrated  
 
ECOCLIMAP
1 
INRA 
GTOPO30 

 
Force-restore 
2 or 3  
3  
No  
1 
 
b=0.5 
Forced to 0. 
 
ECOCLIMAP
1 
INRA 
GTOPO30 

                                  
                             Diffusion 
                             14 soil layers 
                             12 snow layers 
                             A-gs module 
                             12 
 
                             b=0.25 
                             No 
 
                             ECOCLIMAP2 
                             HWSD 
                             SRTM90 

Hydrology 
Subgrid runoff 
Subgrid drainage 
Databases 
Vegetation 
Soil 
Topography 

Infrared radiation 
Correction 

 
Off  

 
Off  

 
Off  

 
On 

 
On 

 
On 

Mountain specificity 
Subgrid topography 
Drainage reservoir 

 
Off 

 
Off 

 
Off 

 
Off 

 
On 

 
On 

Off Off Off Off Off On 
 
 

Table 2: Annual mean BIAS and RMSE of LSAF, SAFRAN and corrected SAFRAN infrared radiations at Carpentras (95 m), Col 740 
de Porte (1340 m), Argentière (1900 m), and Saint-Sorlin (2620 m). 

 LSAF IR radiation 
W m-2 

SAFRAN IR radiation  
without correction W m-2 

SAFRAN IR radiation  
with correction W m-2 

 BIAS RMSE BIAS RMSE BIAS RMSE 
Carpentras 1.3 10.2 -8.4 21.5 3.1 20.3 
Col de Porte -10.3 20.2 -14.4 20.4 -9.3 17.5 
Argentière -18.8 32.6 -3.6 18.5 -3.6 18.5 
Saint-Sorlin 0.1 27.8 10.5 25.3 10.5 25.3 

 
Table 3: Annual mean BIAS and RMSE of soil temperature profile at 10, 20, 50 and 100 cm below ground in the SIM_NEW 
simulation. 

Depth below ground (cm) 10 20 50 100 
Temperature BIAS (K) -0.7 -0.8 -0.8 -0.8 
Temperature RMSE (K) 2.1 1.4 1.2 1.0 
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Figure 1: Topography height of SIM grid cells (left) and mountains grid cells (right). Yellow areas correspond to the Seine and 
Rhone aquifers. The dashed line delineates the Alps mountain. 

 

Figure 2: Clay (left) and sand (right) fractions on the 8 km SIM grid. 750 
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Figure 3: Annual mean of downward longwave infrared radiation without correction (left) and of infrared radiation correction 
(right). 
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Figure 4: 1958-2018 SAFRAN annual mean of: (a) 2-meter air temperature, (b) 2-meter air specific humidity, (c) 10-meter wind 755 
speed, (d) annual total precipitation, (e) direct solar radiation, and (f) diffuse solar radiation. 
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Figure 5: Annual mean of: (a) 2-meter air temperature, (b) 2-meter air specific humidity, (c) 10-meter wind speed, (d) direct solar 
radiation, (e) diffuse solar radiation, (f) infrared radiation, and (e) total precipitation rate. 
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 760 
Figure 6:  Location and elevation of the 104 ground-based stations measuring soil temperature profiles. 

 

Figure 7: Comparison of the CCDF of NSE (left panel), i.e. the percentage of stations having a NSE higher than the NSE in abscissa, 
and the distribution of discharge ratio (right panel) for SIM_REF (dashed blue line), SIM_REF2 (solid blue line), and SIM_PHY 
(solid red line) 765 
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Figure 8: Comparison of the CCDF of NSE (left panel) and the distribution of discharge ratio (right panel) for SIM_REF (dashed 
blue line), SIM_PHY (solid red line), SIM_FRC (solid cyan line), SIM_TOP (solid green line), and SIM_NEW (solid orange line) 
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Figure 9: Map of averaged difference of NSEs for NSE>0 for the different simulations with SIM: (a) SIM_PHY-SIM_REF, (b) 770 
SIM_FRC-SIM-PHY, (c) SIM_TOP-SIM_FRC, (d) SIM_NEW-SIM_TOP. 
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Figure 10: Map of averaged difference of NSEs for NSE>0 comparing SIM_NEW and SIM_REF (left panel) and map of SIM_NEW 
NSE (right panel). 
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 775 
Figure 11: Seasonal Tailor diagrams of the different experiments over the whole period. 
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Figure 12: Taylor diagram of Q10 and Q90 deciles. 

 

Figure 13: Comparison of monthly discharges with SIM_NEW for La Garonne river at Lamagistere. 780 
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Figure 14: Bias and RMSE of daily total snow depth for SIM_NEW (blue) and SIM_REF (red) simulations, as a function of elevation. 
The scores are computed for 185 stations over the period 1984-2016 for months between October and June. The boxes represent the 
interquartile interval, the whiskers the 10th and 90th percentiles, and the notch represents the 90% confidence interval of the median 
estimated by a bootstrap sampling technique among the available stations.  785 

 

Figure 15: SIM_NEW mean annual Bowen ratio (a) and evaporation to precipitation ratio (b). 
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Figure 16: Mean annual evaporation to precipitation ratio. 

 790 
Figure 17: Mean annual Bowen ratio. 
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